Article ID Journal Published Year Pages File Type
8150761 Journal of Crystal Growth 2014 22 Pages PDF
Abstract
A 600 µm thick GaN layer was successfully grown by hydride vapor phase epitaxy by replacing the standard sapphire substrate with that processed by a focused laser beam within the substrate. The effects of the laser processing on the curvature and cracking of the GaN layer were investigated. Microscopic observations of the interior of the thick GaN layer revealed that the laser-processed substrate suppressed the generation of microcracks in the GaN layer. In addition, the laser processing was also found to reduce the change in the curvature during the GaN layer growth in comparison to that on the standard substrate. It is shown that the overlapping microcracks observed in the GaN layer on the standard sapphire substrate lead to serious cracking after thick GaN layer growth.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,