Article ID Journal Published Year Pages File Type
8151856 Journal of Crystal Growth 2013 7 Pages PDF
Abstract
We investigated the properties of a GaN epilayer grown by metalorganic vapour phase epitaxy on a c-plane bulk GaN substrate obtained by ammonothermal growth. X-ray diffraction measurements showed that the epilayer and substrate were fully relaxed, had a miscut angle of 0.3±0.05° towards m and had omega rocking curve width values of 20-30 arcsec, limited by the instrumental broadening. Scanning capacitance microscopy data of the sample in cross-section indicated that the substrate had n-type conductivity with a carrier concentration of at least 1019 cm−3. Combined optical Nomarski microscopy, atomic-force microscopy and scanning electron microscope-cathodoluminescence studies showed the presence of large hexagonal pyramids on the surface, each associated with one or two dislocations with a screw-component threading from the substrate. This observation leads us to calculate a lower limit of the threading dislocation density of 3×102 cm−2. We predict that the formation of such hexagonal hillocks during epitaxy can be avoided with a slightly larger miscut angle of 0.4° or 0.5°. Another type of defect observed were ridge-like surface structures with narrow arrays of edge-type threading defects with a local density of 109 cm−2. However, the absence of threading defects below the regrowth interface at a ridge suggested that this type of structure is linked to (polishing) damage to the substrate surface and is therefore rated as an avoidable problem.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,