Article ID Journal Published Year Pages File Type
8153494 Journal of Magnetism and Magnetic Materials 2018 6 Pages PDF
Abstract
Using the s-d microscopic model including the electron-phonon interaction and the Green's function theory we have considered the origin of room temperature ferromagnetism (RTFM) in pure and ion doped In2O3 nanoparticles (NPs). The magnetization M increases with decreasing particle size. M of Fe, Tb and Mn doped In2O3 NPs is investigated, which increases, decreases and has a maximum, respectively, with increasing doping concentration. The RTFM is due to surface oxygen vacancies and different ionic radius of the dopants compared to that of the host ions. This differences lead to different strains which changes the exchange interaction constants. We have calculated the dependence of the band gap energy on the particle size in In2O3 NPs and the Fe concentration of Fe doped In2O3 NPs. The results are in good qualitative agreement with the experimental data.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,