Article ID Journal Published Year Pages File Type
8154264 Journal of Magnetism and Magnetic Materials 2017 7 Pages PDF
Abstract
Nanocrystalline antiferromagnetic Mn35Ge35Te30 diluted magnetic semiconductors powder syntheses by the conventional direct reaction of pure metals. Nanocrystalline nature of the prepared sample confirmed using various techniques, where x-Ray diffraction (XRD) and atomic force microscope (AFM) measurements shows ~96 nm particle size, while transmission electron microscope (TEM) shows 92 nm particle size. XRD analysis show orthorhombic symmetry with lattice parameters a=7.386611±(0.0066) Å, b=8.962502±(0.0090) Å and c=7.027349±(0.0040) Å. Electron Spin resonance (ESR) show a broad asymmetric line whereas the remnant Mn2+ six-hyperfine lines are broadened within |+1/2>→|−1/2> line according to high anisotropy; calculated Landé g-factor is 2.047. Vibrating sample magnetometer (VSM) analysis, field-moment characteristics revealed a hysteresis loop with small coercive field indicating that Mn35Ge35Te30 is a soft magnetic material. Moreover, hysteresis measurements at different temperatures show increasing magnetization with increasing temperature up to 150 K followed by decreased with increasing temperature up to 300 K. This behavior indicated to the antiferromagnetic nature of the prepared nanocrystalline materials. Magnetic moment - temperature measurements show Néel temperature TN=172.6 K. Magnetic force microscope revealed magnetic domains as a result of interaction between magnetic dipole moments of magnetic cantilever and pressed powder.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,