| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 8155087 | Journal of Magnetism and Magnetic Materials | 2016 | 6 Pages |
Abstract
NiCuZn ferrites with the composition of (Ni0.48Cu0.10Zn0.42O)1.04(Fe2O3)0.96 were consolidated by microwave sintering (MS) and conventional sintering (CS), respectively. The influences of external microwave field and additives (1Â wt% BSZ glass or 1Â wt% Bi2O3) on the microstructure and DC-bias superposition characteristics of NiCuZn ferrites were investigated. Experimental results demonstrated that the final grain size was much larger with higher density since applying microwave field. In addition, for undoped ferrites, coarse grains structure obtained from microwave sintering is harmful to the DC-bias superposition characteristics. However, since adding BSZ glass or Bi2O3, the discrepancy on the final grain size obtained from MS and CS methods is not obvious. NiCuZn ferrites with the addition of BSZ glass or Bi2O3 exhibited a stronger ability to inhibit the drop of permeability under the DC-bias magnetic field. Possible mechanisms behind are discussed in this article.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Chenxin Ouyang, Shumin Xiao, Jianhua Zhu, Wei Shi,
