Article ID Journal Published Year Pages File Type
8155124 Journal of Magnetism and Magnetic Materials 2016 28 Pages PDF
Abstract
Strong ferromagnetism has been detected in the semiconducting half-Heusler CoTiSb compound. The synthesis process was carried out by direct fusion of highly pure Co, Ti, and Sb in an evacuated quartz tube. The structural, micro structural and magnetic properties were investigated. The crystal structure was refined from X-ray powder diffraction data by the Rietveld method. Applying the search match program, three nano-crystalline phases of CoTiSb, Ti3Sb and CoTi2 (50%, 33.3% and 16.7% respectively) were identified for the prepared system. The term “phase” is used to address the co-existence of different stable chemical composition for the same half-Heusler alloy. The scanning electron microscope SEM and the high resolution transmission electron microscope HR-TEM were applied to characterize the morphology, size, shape, crystallinity and lattice spacing. A mixture of ordered and disordered arrangement was detected. Well defined nano-crystalline structure with an average interatomic distance equals 0.333 nm and sharp diffraction spots were measured. Contrary to this, the HR-TEM and electron diffraction image shows distorted structured planes and smeared halo surrounded by weak rings. Thermo-magnetic measurements (M-T) have been measured between 640 °K and 920 °K. Clear magnetic phase transition is detected above 900 °K (Tc), in addition to a second possible phase transition (TFF) around 740 °K. The latter is clarified by plotting ΔM/ΔT vs. T. To determine the type of the detected phase transitions, the field dependence of magnetization was measured at 300 °K and 740 °K. Arrot plots (M2−H/M) confirm the ferromagnetic character at both temperatures. It may be reasonable to assume the TFF transition as an additional ferromagnetic contribution stemming from some sort of exchange interactions. A tentative magnetic phase diagram is given. Overall, the present results suggest that the prepared multiphases CoTiSb system does not obey the 18 valence electron/unit cell category of zero magnetic moment. Electronic structure calculations of the prepared stable multiphases CoTiSb is necessary to understand the origin of the detected strong half-metallic ferromagnetic behavior.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,