Article ID Journal Published Year Pages File Type
8155959 Journal of Magnetism and Magnetic Materials 2015 6 Pages PDF
Abstract
MnGa films of few nanometer thickness with tetragonal zinc-blende (TZB) structure were grown by molecular beam epitaxy on GaAs(111) substrates. These ultrathin films have high magnetization at room temperature with magnetic moment as high as 3.2 μB per formula unit. A strong magnetocrystalline anisotropy energy (MAE) comparable to that reported to δ-MnGa films with body-centered tetragonal (BCT) structure with similar c/a=1.1 is observed. Electronic structure calculations using density functional theory (DFT) reveal a robust ferrimagnetic ground state at room temperature and confirm that zinc-blende structure with tetragonal distortion has a metastable character. The strong MAE is associated with anisotropy of orbital magnetic moment which is described by the symmetry of the spin-polarized charge density along the crystallographic axes.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , ,