Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8158293 | Journal of Magnetism and Magnetic Materials | 2013 | 7 Pages |
Abstract
Monte Carlo simulation based on Metropolis algorithm has been used with a great success to analyze the dynamic phase transition properties of a single spherical core-shell nanoparticle system with a spin-3/2 core surrounded by a spin-1 shell layer with antiferromagnetic interface coupling under the influence of a time dependent oscillating magnetic filed. It has been found that the dynamic phase boundaries strongly depend on the Hamiltonian parameters such as for the high amplitude and period values of the external field, the phase transition temperature sharply changes whereas it tends slowly to alter as the reduced magnitude of interlayer parameter Jint/Jsh increases. Moreover, it is observed that the magnetization curves of the particle have been found to obey P-type, N-type and Q-type classification schemes under certain conditions. Much effort has also been paid to the influence of the particle size on the thermal and magnetic properties of the particle. Finally, a comparison of our observations with those of recently published study including dynamic treatments of a nanocubic core-shell system is represented and the findings indicate that there exists a qualitatively good agreement with some relatively distinct differences.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Erol Vatansever, Hamza Polat,