Article ID Journal Published Year Pages File Type
815834 Ain Shams Engineering Journal 2013 6 Pages PDF
Abstract
The unsteady two-dimensional flow of a non-Newtonian fluid over a stretching surface having a prescribed surface temperature is investigated. The Casson fluid model is used to characterise the non-Newtonian fluid behaviour. Similarity transformations are employed to transform the governing partial differential equations into ordinary differential equations. The transformed equations are then solved numerically by shooting method. Exact solution corresponding to momentum equation for steady case is obtained. The flow features and heat transfer characteristics for different values of the governing parameters viz. unsteadiness parameter, Casson parameter and Prandtl number are analysed and discussed in detail. Fluid velocity initially decreases with increasing unsteadiness parameter and temperature decreases significantly due to unsteadiness. The effect of increasing values of the Casson parameter is to suppress the velocity field. But the temperature is enhanced with increasing Casson parameter.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,