Article ID Journal Published Year Pages File Type
816066 Alexandria Engineering Journal 2016 13 Pages PDF
Abstract
Mixed convection has been a center point of attraction to the heat transfer engineers for many years. Here, pure mixed convection analysis in cavity is carried out for two different geometric heater configurations under externally applied magnetic field. Ferrofluid (Fe3O4-water) is considered as working fluid and modeled as single phase fluid. The heaters at the bottom wall are kept at constant high temperature while vertical side walls are adiabatic. The top wall is moving at a constant velocity in both geometric configurations and is kept at constant low temperature. Galerkin weighted residuals method of finite element analysis is implemented to solve the governing equations. The analysis has been carried out for a wide range of Richardson number (Ri = 0.1-10), Reynolds number (Re = 100-500), Hartmann number (Ha = 0-100) and solid volume fraction (φ = 0-0.15) of ferrofluid. The overall heat transfer performance for both the configurations is quantitatively investigated by average Nusselt number at the heated boundary wall. It is observed that higher Ri enhances the heat transfer rate, although higher Ha decreases heat transfer rate. Moreover, at higher Ri and lower Ha, semi-circular notched cavity shows significantly better (more than 30%) heat transfer rate.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , ,