Article ID Journal Published Year Pages File Type
8160838 Physica B: Condensed Matter 2018 26 Pages PDF
Abstract
It is a confused problem in the literature that the c-axis value of Ti3C2 MXene changes with the synthesis procedure, but the part of the surface structures that plays the role of pillar to support the Ti3C2 layers and their variation rules remain controversial. In this work, we develop the structure models and formation mechanisms of Ti3C2Tx based on the density functional theory calculations and experimental results. While the c-axis values of the samples vary from about 1.9 to 2.9 nm, the corresponding pillars are determined by different distributions and proportions of the H-containing groups. The proportions of the H-containing groups that determine the c-axis value are formulated as the functions of the interlayer space, which can be used to quantitatively clarify the changes of the surface functional groups after the samples experiencing different treatments. The results can facilitate the in situ detections of the surface structures of MXenes during different treatments or electrochemical processes.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,