Article ID Journal Published Year Pages File Type
8160962 Physica B: Condensed Matter 2018 6 Pages PDF
Abstract
In this study, Ga0.6Sb0.4 thin films were grown on quartz and Ge(100) 1° off-axis substrates by RF magnetron sputtering at 500 °C. Ga0.6Sb0.4/Ge(100) shows n-type conductivity at room temperature (RT) and p-type conductivity at low temperatures, whereas undoped GaSb thin films exhibit p-type conductivity, irrespective of their growth methods and conditions. Their electrical properties were determined by rapid thermal annealing, which revealed that Ga0.6Sb0.4/Ge(100) contains two types of acceptors and two types of donors. The acceptors are considered to be GaSb and electrically active sites on dislocations originating at the Ga0.6Sb0.4/Ge(100) interface, while donors are believed to be Gai and electrically active sites originating at the Ga0.6Sb0.4/Ge(100) interface. In these acceptors and donors, the shallow donor concentration is higher than the shallow acceptor concentration, and the shallow donor level is deeper than the shallow acceptor level. Thus, we concluded that Ga0.6Sb0.4/Ge(100) shows n-type conductivity at RT due to electrically active sites originating at the Ga0.6Sb0.4/Ge(100) interface and native defects originating from excess Ga.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,