Article ID Journal Published Year Pages File Type
8161545 Physica B: Condensed Matter 2018 6 Pages PDF
Abstract
The structural and electronic properties of pure and Ti3+-doped α-Al2O3 were calculated in the present paper by using the first-principles methods. Special attention has been paid to the location of the Ti3+ states (3d1 electron configuration) in the band gap; the lowest 3d states are at about 4.78 eV above the top of the valence band. The crystal field strength 10Dq at the Ti3+ site was estimated from the density of states diagrams to be about 17,700 cm−1. The structural optimization of the unit cell was also performed at elevated hydrostatic pressure in the range from 0 to 25 GPa. By application of the Murnaghan equation to the obtained results, the bulk modulus of α-Al2O3 was estimated to be 225.69 GPa. In addition, from the analysis of the Ti3+3d density of states the distance dependence of the crystal field strength was found to be described by the following function: 10Dq=61.744/R4.671, where R is expressed in Å and 10Dq in eV.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,