Article ID Journal Published Year Pages File Type
8162176 Physica B: Condensed Matter 2014 4 Pages PDF
Abstract
In this paper we give a theoretical proof of the existence of a second-order structural phase transition in the GeS at a pressure of 35.4 GPa. We use the plane-wave pseudopotential approach to the density functional theory in the local density approximation. The evidence of the phase transition is the abrupt change in the bulk modulus as the volume of the unit cell of the crystal changes continuously. We show that the phase transition is caused by the softening of the low-frequency fully symmetric interlayer mode with increasing pressure. As a result, phase transition of a displacement type takes place with the change of translational symmetry of the crystal from the simple orthorhombic to the base-centered orthorhombic (Pbnm(D2h16)→Cmcm(D2h17)).
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,