Article ID Journal Published Year Pages File Type
816334 Alexandria Engineering Journal 2013 5 Pages PDF
Abstract
This article studies the combined effect of heat and mass transfer in Jeffrey fluid over a stretching sheet in the presence of heat source/heat sink. The surface temperature and the concentration are assumed to vary according to power law form. The arising non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations and then exact solutions are derived by power series method using Kummer's confluent hyper-geometric functions. The effects of emerging parameters on the velocity, temperature and concentration profiles are shown and examined. It is observed that the velocity increases with an increase in Deborah number. Further the temperature is a decreasing function of Deborah number. Thermal boundary layer thickness decreases by increasing the wall temperature and heat sink parameters.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
,