Article ID Journal Published Year Pages File Type
8164774 Physica C: Superconductivity and its Applications 2013 10 Pages PDF
Abstract
Porous MgB2 powders are comprised of an ensemble of irregularly shaped constituents. In this work we introduce a model for the critical current density in such powders in the presence of a low external field H (H < 4 T) and in the high-porosity limit, where effects of vortex-lattice elasticity can be neglected and vortex pinning takes place within the powder-constituents. The ensuing critical current-density expression is a product of three decoupled factors: The first sets the scale for the critical current-density magnitude, while the second and third factors contain the field and powder-constituent size-parameters dependencies, respectively. The field dependent factor is of the form H−n and 0.5⩽n⩽1.0, where the limiting exponents n = 0.5 and n = 1.0 correspond to vortex configurations within a powder-constituent of a linear array and a two-dimensional lattice, respectively. For the calculations, we assume for the powder constituent shape a cylinder of arbitrary height and radius, where an external field and a single pinned vortex are aligned in parallel to the cylinder's axis. The exact fields of this configuration are derived. The size-parameters dependence implies enhanced critical current density for a cigar-like shape powder-constituent aligned with the field, and of radius smaller than about three times the penetration depth. These conclusions are consistent with pertaining data.
Keywords
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,