Article ID Journal Published Year Pages File Type
816490 Alexandria Engineering Journal 2014 7 Pages PDF
Abstract
In this article, we studied MHD peristaltic flow of a Carreau nanofluid in an asymmetric channel. The flow development is carried out in a wave frame of reference moving with velocity of the wave c1. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then tackled numerically using the fourth and fifth order Runge-Kutta-Fehlberg. Numerical results are obtained for dimensionless velocity, stream function, pressure rise, temperature and nanoparticle volume fraction. It is found that the pressure rise increases with increase in Hartmann Number and thermophoresis parameter.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,