Article ID Journal Published Year Pages File Type
8166190 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2018 7 Pages PDF
Abstract
In high count rate radiation spectroscopy and imaging, detector output pulses tend to pile up due to high interaction rate of the particles with the detector. Pile-up effects can lead to a severe distortion of the energy and timing information. Pile-up events are conventionally prevented or rejected by both analog and digital electronics. However, for decreasing the exposure times in medical imaging applications, it is important to maintain the pulses and extract their true information by pile-up correction methods. The single-event reconstruction method is a relatively new model-based approach for recovering the pulses one-by-one using a fitting procedure, for which a fast fitting algorithm is a prerequisite. This article proposes a fast non-iterative algorithm based on successive integration which fits the bi-exponential model to experimental data. After optimizing the method, the energy spectra, energy resolution and peak-to-peak count ratios are calculated for different counting rates using the proposed algorithm as well as the rejection method for comparison. The obtained results prove the effectiveness of the proposed method as a pile-up processing scheme designed for spectroscopic and medical radiation detection applications.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, ,