Article ID Journal Published Year Pages File Type
8166295 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2018 21 Pages PDF
Abstract
Recent interest in highly excited matter generated by intense femtosecond laser pulses has led to experimental methods that directly investigate ultrafast non-equilibrium electronic and structural dynamics. We present a tabletop experimental station for the extreme ultraviolet (EUV) spectroscopy used to trace L-edge dynamics in warm dense aluminum with a temporal resolution of a hundred femtoseconds. The system consists of the EUV probe generation part via a high-order harmonic generation process of femtosecond laser pulses with atomic clusters, a beamline with high-throughput optics and a sample-refreshment system of nano-foils utilizing the full repetition rate of the probe, and a flat-field EUV spectrograph. With the accumulation of an order of a hundred shots, a clear observation of the change in the aluminum L-shell absorption was achieved with a temporal resolution of 90 fs in a 600-fs window. The signature of a non-equilibrium electron distribution over a 10-eV range and its evolution to a 1-eV Fermi distribution are observed. This demonstrates the capability of this apparatus to capture the non-equilibrium electron-hole dynamics in highly excited warm dense matter conditions.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , , , , , , ,