Article ID Journal Published Year Pages File Type
8166724 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2018 4 Pages PDF
Abstract
Recent advances in accelerator science are opening new possibilities in different fields of physics. In particular, the development of compact linear accelerators that can provide charged particles of low-medium energy (few MeV) with high current (above mA) allows for the study of new possibilities in neutron production and for new routes for the production of radioisotopes. Keeping in mind how radioisotopes are actually produced in dedicated facilities, we have performed a study of alternative reactions to produce PET isotopes induced by low-energy deuterons. We have fitted the EXFOR cross sections data, used the fitted values of the stopping power by Andersen and Ziegler and calculated by numerical integration the production rate of isotopes for charged particles up to 20 MeV. The results for deuterons up to 3 MeV are compared with the ones from cyclotrons, which are able to provide higher energies to the charged projectiles but with lower intensities. Our results indicate that using linear accelerators may be a good alternative for producing PET isotopes, reducing the problem of neutron activation.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , ,