Article ID Journal Published Year Pages File Type
816966 Composites Part B: Engineering 2016 10 Pages PDF
Abstract

This work presents a novel zero in-plane Poisson's ratio honeycomb design for large out-of-plane deformations and morphing. The novel honeycomb topology is composed by two parts that provide separate in-plane and out-of-plane deformations contributions. The hexagonal component generates the out-of-plane load-bearing compression and in-plane compliance, while a thin plate part that connects the hexagonal section delivers the out-of-plane flexibility. The paper illustrates the in-plane mechanical properties through a combination of theoretical analysis, FE homogenization and experimental tests. Parametric analyses are also carried out to determine the dependence of the in-plane stiffness versus the geometric parameters that define the zero-ν honeycomb.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , ,