Article ID Journal Published Year Pages File Type
817235 Composites Part B: Engineering 2015 6 Pages PDF
Abstract

Many attempts have been made to fabricate lightweight, high-performance, and low-cost polymeric composites. To improve the mechanical performance of the same material compared to conventional composites, paired hybrid materials were manufactured with different lamination structures. Each of six types of hybrid composite was designed by lamination pairing of carbon/aramid fabric and carbon/glass fabric using VARTM. The dependence of the mechanical properties of the samples on the pairing effects of the lamination structures was investigated. All pairing materials did not lead to a large increase of tensile strength due to the domination of carbon fiber, but the mechanical properties of specific laminates were clearly changed by the particular pairing sequence used. Using the limited material, the design of an effective structure was the central laminating condition with a good tensile and bending properties. Laminating position of the carbon fiber was found to play an important role in the stacking design of hybrid composites.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
,