Article ID Journal Published Year Pages File Type
8172490 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2015 9 Pages PDF
Abstract
RAON has been designed as a rare isotope accelerator facility for the Rare Isotope Science Project (RISP). The main accelerator for the in-flight system accelerates uranium and proton beams to 200 MeV/u and 660 MeV, respectively, with a beam power of 400 kW. The front-end system consists of two 28 GHz electron cyclotron resonance ion sources (10 keV/u), a low-energy beam transport (LEBT) line with two 90° bends, a multi-harmonic buncher with three different rf frequencies, a radio-frequency quadrupole (RFQ), and a medium-energy beam transport line (MEBT) with three rebunchers and eight quadrupoles. A driver linac system consisting of Linac-1 and Linac-2 has been designed to optimize the beam and accelerator parameters so as to meet the required design goals. A charge stripper section is located between Linac-1 and Linac-2. To optimize these designs, we performed start-to-end simulations with the beams from the LEBT to Linac-2 using 1 million macroparticles. We present the resulting beam dynamics to evaluate the performance of the accelerator. Our simulation results predict that the transmission rate of the uranium beam is 85.8% from the LEBT to Linac-2. The designed facility is expected to achieve the required beam loss condition of less than 1 W/m. The RAON driver linac lattice design was developed and an overview of the beam dynamics is presented.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , , , ,