Article ID Journal Published Year Pages File Type
817254 Composites Part B: Engineering 2015 18 Pages PDF
Abstract

This paper presents buckling analysis of a two-dimensional functionally graded cylindrical shell reinforced by axial stiffeners (stringer) under combined compressive axial and transverse uniform distributive load. The shell material properties are graded in the direction of thickness and length according to a simple power law distribution in terms of the volume fractions of the constituents. Primarily, the third order shear deformation theory (TSDT) is used to derive the equilibrium and stability equations. Since there is no closed form solution, the numerical differential quadrature method, (DQM), is applied for solving the stability equations. Initially, the obtained results for an isotropic shell using DQM were verified against those given in the literature for simply supported boundary conditions. The effects of load, geometrical and stringer parameters along with FG power index in the various boundary conditions on the critical buckling load have been studied. The study of results confirms that, stringers have significant effects on critical buckling load.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,