Article ID Journal Published Year Pages File Type
8173081 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2015 4 Pages PDF
Abstract
As a promising scintillator in the field of medical imaging systems, LYSO with its high refractive index suffers from a low light extraction efficiency due to the total internal reflection. Here, we demonstrate that a photonic structure formed by an anodized aluminum oxide layer can enhance the light extraction efficiency by the outcoupling the light trapped in the crystal. An enhancement of light output by 25% can be achieved by an AAO layer covered on the surface of LYSO. The imperfect periodicity of AAO can lead to a consistent enhancement for the entire range of emission wavelength and directionality. Such enhanced light output is practical and attractive for use in the scintillation detection systems. It is important to note that the fabrication method of AAO is simple and low-cost for the large area applications, which is obviously advantageous over the expensive traditional methods such as electron beam lithography.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , , , , , , , ,