Article ID Journal Published Year Pages File Type
817373 Composites Part B: Engineering 2015 9 Pages PDF
Abstract
The purpose of the present study is to develop novel nanocomposites based on diglycidylether of bisphenol A (DGEBA) combined with diglycidylether-terminated polydimethylsiloxane (DG-PDMS), reinforced with 10 wt.% (mono-/octa) epoxy POSS nanocages (MEP or OEP-POSS). DG-PDMS and POSS compounds were covalently incorporated into DGEBA resin via copolymerization of epoxy groups. The effect of both DG-PDMS and POSS nanoparticles on the curing reaction, glass transition temperature (Tg), thermal stability, hardness and morphology of DGEBA/DG-PDMS ± POSS nanocomposites were studied by DSC, FTIR, DMA, TGA, SEM/EDX, AFM and contact angle measurements. SEM/EDX and AFM results prove that OEP-POSS is well dispersed within DGEBA/DG-PDMS polymer matrix, while MEP-POSS forms large POSS aggregates. The thermo-mechanical properties of POSS based nanocomposites are also in good correlation with morphology features. MEP-POSS based nanocomposite with heterogeneous dispersion of POSS aggregates exhibits lower Tg value and thermal stability in comparison with OEP-POSS nanocomposite which exhibits a nanoscale dispersion of the POSS cages. The obtained Tg of OEP-POSS based nanocomposite increases with 31 °C in comparison with the unreinforced matrix. Moreover, this nanocomposite shows the highest storage modulus (E′) and hardness.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , , , , ,