Article ID Journal Published Year Pages File Type
817380 Composites Part B: Engineering 2015 10 Pages PDF
Abstract
A corrected Linde's criterion considering the shearing effect for anisotropic progressive damage is developed to describe the elastic-brittle behavior of fiber-reinforced composites. Based on this criterion, a new three-dimensional (3D) nonlinear finite element model for static damage of unidirectional fiber-reinforced composites is proposed within a framework of continuum mechanics. The model is validated by taking 3D braided composites as example to study the relationship between the damage of materials and the effective elastic properties. The impregnated unidirectional composites are treated as homogeneous and transversely isotropic materials, whose properties are calculated by the Chamis' equations. The more accurate failure mechanisms of composites are revealed in the simulation process, and the effects of braided parameters on the uniaxial tensile behavior of 3D braided composites are investigated. Comparison of numerical results and experimental data is also carried out, which shows a better agreement than that of former study using the 3D Hashin's criterion.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , ,