Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
817534 | Composites Part B: Engineering | 2015 | 8 Pages |
Abstract
In this work a study about the adaption of the classical laminate theory for fatigue loads is presented. Cycle dependent stiffnesses of single UD 0°, UD 45° and UD 90° plies are implemented in order to calculate the fatigue-induced stiffness decrease of a multidirectional lay-up with the stacking sequence [0°/+45°/â45°/90°/90°/â45°/+45°/0°]. As second input alternative, UD 0°, UD 90° and ±45° plies are used. The calculated cycle-dependent stiffness parameters are compared to experimentally measured fatigue data of the multidirectional lay-up. The experimental test procedure used for the measurement of cycle-dependent stiffness parameters has been published previously. Results show that the experimentally measured stiffness decreases of the multidirectional lay-up can be estimated accurately based on the cyclic unidirectional input parameters.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Julia Brunbauer, Gerald Pinter,