Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
817585 | Composites Part B: Engineering | 2015 | 7 Pages |
Abstract
In this study, carbon fibers (CFs) were coated with graphene nanoplatelets (GnP), using a robust and continuous coating process. CFs were directly immersed in a stable GnP suspension and the coating conditions were optimized in order to obtain a high density of homogeneously and well-dispersed GnP. GnP coated CFs/epoxy composites were manufactured by a prepreg and lay-up method, and the mechanical properties and electrical conductivity of the composites were assessed. The GnP coated CFs/epoxy composites showed 52%, 7%, and 19% of increase in comparison with non-coated CFs/epoxy composites, for 90° flexural strength, 0° flexural strength and interlaminar shear strength, respectively. Meanwhile, incorporating GnP in the CF/epoxy interphase significantly improved the electrical conductivity through the thickness direction by creating a conductive path between the fibers.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Wenzhen Qin, Frederic Vautard, Lawrence T. Drzal, Junrong Yu,