Article ID Journal Published Year Pages File Type
8175934 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2014 5 Pages PDF
Abstract
The decay time profile of vacuum ultraviolet scintillation induced by electronic recoils has been studied for liquid and gaseous xenon. The scintillation light from xenon excited by a gamma source was measured by using two vacuum ultraviolet sensitive photomultipliers, one for detecting scintillation and the other for counting photons of weak monochromatic light. The analysis results based on the time-correlated single photon counting method show that the time profile in the 176 nm scintillation decay curve for liquid xenon is consistent with a single exponential component and the decay time constant is 31.5±1.3 ns. This constant does not change significantly for pressure ranges between 90 kPa and 130 kPa. There is no emission wavelength dependence of the decay constant. The result corresponds to an average on electronic recoil energies up to 1.3 MeV.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, ,