Article ID Journal Published Year Pages File Type
817649 Composites Part B: Engineering 2014 27 Pages PDF
Abstract
This paper describes a micromechanical hybrid finite element approach to study the stress transfer in single-walled carbon nanotube reinforced composites. A three-dimensional representative volume element of composite has been considered in this analysis. The nanotube is modeled taking into account its atomistic microstructure. The matrix material is modeled as continuum utilizing appropriate solid finite elements. Spring-based elements are used to describe the behavior of the single-walled carbon nanotubes. The interfacial effects between the two materials are simulated by appropriate stiffness variations defining a heterogeneous region. The model presents a reasonable behavior, with respect to composite effective mechanical properties, comparing with results available in the literature. The effects of carbon nanotube volume fraction, interfacial stiffness and elastic modulus of matrix on stresses are analyzed in details.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,