Article ID Journal Published Year Pages File Type
817675 Composites Part B: Engineering 2014 8 Pages PDF
Abstract

In random-chopped fiber-reinforced polymer (FRP) composites used as a retrofit material, a high volume fraction of voids is inevitable due to the manufacturing characteristics. In this paper, the mechanical characteristics and strengthening effectiveness of random-chopped FRP composites containing air porosity are investigated through experiments and numerical analysis. Coupon-shaped specimens with various material compositions were manufactured to examine the uniaxial tensile performance, and the air voids in the composites were measured by a microscope camera. In order to predict the overall performance of the composites, a micromechanical formulation that accounts for porosity was newly developed. The derived model was incorporated into a finite element (FE) code, and the model parameters were estimated by comparing uniaxial tensile test results for various systems of random-chopped FRP composites. In addition, concrete beams strengthened with the composites were produced to evaluate their load-carrying capacity. The FE predictions of the composite structures were then compared with experimental data to verify the predictive capability of the proposed numerical framework.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,