Article ID Journal Published Year Pages File Type
817792 Composites Part B: Engineering 2014 9 Pages PDF
Abstract

The buckling and postbuckling responses of cylindrical sandwich panels, subjected to non-uniform in-plane loadings are investigates in this paper by analytical method. A fourth and fifth order expansions are used respectively for the transverse and tangential displacement of the core to model the core compressibility effect. The stress distribution within the panels due to the applied non-uniform in-plane edge loadings are determined by prebuckling analysis. The governing partial differential equations describing the buckling and postbuckling behavior of cylindrical sandwich panels are derived using the principle of minimum total potential energy. Galerkin’s method is used to reduce the governing partial differential equations to a set of non-linear algebraic equations. Newton–Raphson method in conjunction with Riks approach is employed to solve the algebraic equations. Numerical results are presented for both flat and cylindrical sandwich panels subjected to various non-uniform in-plane edge loadings. The sandwich panels used in the present investigation are made up of isotropic and composite materials.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,