Article ID Journal Published Year Pages File Type
817886 Composites Part B: Engineering 2014 6 Pages PDF
Abstract
The present work deals with the development of new rigid polypropylene composite foams filled with high amounts of flame-retardant systems based on synthetic hydromagnesite, a basic magnesium carbonate obtained from an industrial by-product. A partially-interconnected cellular structure with a cell size around 100 μm was obtained for the hydromagnesite-filled PP foams. A 40% reduction of this cell size was observed when a small amount of a combination of montmorillonite and graphene layered nanoparticles was added to the hydromagnesite. The combination of hydromagnesite with an intumescent additive (ammonium polyphosphate) and layered nanoparticles led to improved thermal stability. In particular, the intumescent additive delayed the beginning of the thermal decomposition temperature and the layered nanoparticles split the second step of thermal decomposition in a third peak observed at higher temperatures. Improved flame retardancy, measured by means of cone calorimetry, was observed in the samples containing the intumescent additive. A novel normalized parameter, called foam efficiency ratio (FER), which takes into account the expansion ratio of the foam and the relation of its fire properties with that of the base solid, was also analyzed.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,