Article ID Journal Published Year Pages File Type
8179074 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2013 5 Pages PDF
Abstract
Local thermal management of detector electronics through ultra-thin micro-structured silicon cooling plates is a very promising technique for pixel detectors in high energy physics experiments, especially at the LHC where the heavily irradiated sensors must be operated at temperatures below −20 °C. It combines a very high thermal efficiency with a very low addition of mass and space, and suppresses all problems of CTE mismatch between the heat source and the heat sink. In addition, the use of CO2 as evaporative coolant liquid brings all the benefits of reliable and stable operation, but the high pressures involved impose additional challenges on the micro channel design and the fluidic connectivity. A series of designs have already been prototyped and tested for LHCb. The challenges, the current status of the measurements and the solutions under development will be described.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , , , , , , , , ,