Article ID Journal Published Year Pages File Type
817950 Composites Part B: Engineering 2014 5 Pages PDF
Abstract
Carbon nanotubes (CNTs) have high strength and modulus, large aspect ratio, and good electrical and thermal conductivities, which make them attractive for fabricating composite. The poly(biphenyl dianhydride-p-phenylenediamine) (BPDA/PDA) polyimide has good mechanical and thermal performances and is herein used as matrix in unidirectional carbon nanotube composites for the first time. The strength and modulus of the composite increase by 2.73 and 12 times over pure BPDA-PDA polyimide, while its electrical conductivity reaches to 183 S/cm, which is 1018 times over pure polyimide. The composite has excellent high temperature resistance, and its thermal conductivity is beyond what has been achieved in previous studies. The improved properties of the composites are due to the long CNT length, high level of CNT alignment, high CNT volume fraction and good CNT dispersion in polyimide matrix. The composite is promising for applications that require high strength, lightweight, or high electrical and thermal conductivities.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,