Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8181048 | Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment | 2012 | 4 Pages |
Abstract
In this work we present the design, first prototypes and experimental R&D activities on the development of novel imaging cameras for Imaging Atmospheric Cherenkov and Fluorescence Telescopes. The baseline solution for the focal plane is based on a photosensor architecture instrumented with Silicon Photomultipliers (SiPMs). To decrease the trigger threshold and improve the signal-to-noise ratio for low-energy events, the Photon Counting technique is used. For very bright events the conventional Charge Integration approach is retained. The large number of channels requires a compact and modular design with minimal cabling and distance between the photosensors and the frontend. Other design requirements are an efficient light concentration system treated with an anti-reflective coating, a liquid cooling system able to keep the SiPMs at a temperature of â20°C to â10°C, a low-power frontend electronics down to 1 kW/m2 and an easy field maintenance, high reliability data acquisition and trigger system. In the baseline design, the data acquisition system is partitioned in on-board frontend and off-detector high-level trigger electronics. Extensive use of mixed-signal ASICs and low-power FPGAs for early data reduction (Level 1 trigger), compatible with a liquid cooling sub-system for temperature control is adopted. The off-detector data acquisition and higher trigger (Level 2 and Level 3) architecture is based on the VME64X standard. The boards are connected by multi-Gbps optical links to the focal plane camera. Trigger primitives are sent asynchronously to the trigger boards via data links running at their own clocks. Data and slow-control data streams are also sent over the same links with the parallel VME64X backplane kept for trigger board configuration, slow-control and final data readout. Each 8-slot 6U crate can process up to about 3.6Ã104 SiPM channels.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Instrumentation
Authors
Pedro Assis, Pedro Brogueira, Osvaldo Catalano, Miguel Ferreira, Eckart Lorenz, LuÃs Mendes, Mário Pimenta, Pedro Rodrigues, Thomas Schweizer,