Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
818184 | Composites Part B: Engineering | 2013 | 15 Pages |
Abstract
A computational framework previously presented for nonlinear analysis of RC elements, has been developed for FRP strengthened RC elements in this study. With the aim of the developed model nonlinear behavior of strengthened RC elements can be simulated based on local stresses state at the crack surface considering all stress transfer mechanisms. Moreover, the local response of each component and its effect on the global behavior of the element can be obtained which is useful for proposing rational design relations. The versatility of the proposed method is verified by comparing the analytical and experimental results. Based on the analytical results, a simple relation is proposed for shear design and assessment of FRP strengthened RC elements and members. The accuracy of the proposed design relation is verified against available experimental results on FRP strengthened RC beams.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Bahman Ghiassi, Masoud Soltani, P. Pourkeramat,