Article ID Journal Published Year Pages File Type
818295 Composites Part B: Engineering 2013 9 Pages PDF
Abstract
The stress state of crimped pultruded composite rods subjected to traction has been investigated analytically using the linear theory of elasticity of anisotropic body and the superposition principle. The theoretical solution is able to reproduce the finite element analysis results and clarify the relation between the stress state and the boundary stresses. It can be appreciated from the theoretical solution that a longitudinal compressive stress at the edge of the crimping zone is generated by the boundary shear stress induced by the flow of metal end-fitting. Thus it can be deduced that the stress concentration at the edge of crimping zone could be mitigated through appropriately increasing the extent of the flow of the metal end-fitting away from the middle of the crimping zone. Our research shows that a radial tensile stress existing at the edge of the crimping zone is corresponding to the area of the rod that axial splitting is taken place. Comparison between analytical and numerical results shows the analytical results are in good agreement with the numerical ones except for stress distribution at the edge of the loading zone. The detailed study on stress state at the edge of the crimping zone provides better understanding of the failure mechanism, the improvement possibilities on the crimping technique and the monitoring of the structural health of the composite rod.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,