Article ID Journal Published Year Pages File Type
818342 Composites Part B: Engineering 2013 10 Pages PDF
Abstract
A two-step, multi-scale progressive damage analysis is implemented to study the damage and failure behaviors of 2D plain weave composites under various uniaxial and biaxial loadings. In the progressive damage mode (PDM), a formal-unified 3D Hashin-type criterion is formed to facilitate analysis work and engineering application, with shear nonlinearity considered in the stiffness matrix of yarn. The periodic boundary conditions are developed for the off-axis loading simulations. The simulated stress-strain curves under on-axis uniaxial tension and compression show good agreements with experimental results. The influences of different 3D Hashin-type criteria are subsequently discussed. Moreover, the strength decrease at different off-axis angles and the failure envelopes under on-axis and 45° off-axis biaxial loadings are obtained, with the discussion of different failure characteristics under each loading condition.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,