Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8184832 | Nuclear Physics B | 2018 | 52 Pages |
Abstract
We discuss the concept of gauge-invariant fields for non-abelian gauge theories. Infinitesimal fluctuations around a given gauge field can be split into physical and gauge fluctuations. Starting from some reference field the gauge-invariant fields are constructed by consecutively adding physical fluctuations. An arbitrary gauge field can be mapped to an associated gauge invariant field. An effective action that depends on gauge-invariant fields becomes a gauge-invariant functional of arbitrary gauge fields by associating to every gauge field the corresponding gauge-invariant field. The gauge-invariant effective action can be obtained from an implicit functional integral with a suitable “physical gauge fixing”. We generalize this concept to the gauge-invariant effective average action or flowing action, which involves an infrared cutoff. It obeys a gauge-invariant functional flow equation. We demonstrate the use of this flow equation by a simple computation of the running gauge coupling and propagator in pure SU(N)-Yang-Mills theory.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematical Physics
Authors
C. Wetterich,