Article ID Journal Published Year Pages File Type
8185263 Nuclear Physics B 2016 74 Pages PDF
Abstract
In this paper we study the construction of holomorphic gauge invariant operators for general quiver gauge theories with flavour symmetries. Using a characterisation of the gauge invariants in terms of equivalence classes generated by permutation actions, along with representation theory results in symmetric groups and unitary groups, we give a diagonal basis for the 2-point functions of holomorphic and anti-holomorphic operators. This involves a generalisation of the previously constructed Quiver Restricted Schur operators to the flavoured case. The 3-point functions are derived and shown to be given in terms of networks of symmetric group branching coefficients. The networks are constructed through cutting and gluing operations on the quivers.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,