Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8186719 | Physics Letters B | 2018 | 10 Pages |
Abstract
We propose two different seesaw models namely, type I and inverse seesaw to realise light Dirac neutrinos within the framework of A4 discrete flavour symmetry. The additional fields and their transformations under the flavour symmetries are chosen in such a way that naturally predicts the hierarchies of different elements of the seesaw mass matrices in these two types of seesaw mechanisms. For generic choices of flavon alignments, both the models predict normal hierarchical light neutrino masses with the atmospheric mixing angle in the lower octant. Apart from predicting interesting correlations between different neutrino parameters as well as between neutrino and model parameters, the model also predicts the leptonic Dirac CP phase to lie in a specific range âÏ/3 to Ï/3. While the type I seesaw model predicts smaller values of absolute neutrino mass, the inverse seesaw predictions for the absolute neutrino masses can saturate the cosmological upper bound on sum of absolute neutrino masses for certain choices of model parameters.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
Debasish Borah, Biswajit Karmakar,