Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8186731 | Physics Letters B | 2018 | 7 Pages |
Abstract
In this paper we discuss R-matrix-valued Lax pairs for slN Calogero-Moser model and their relation to integrable quantum long-range spin chains of the Haldane-Shastry-Inozemtsev type. First, we construct the R-matrix-valued Lax pairs for the third flow of the classical Calogero-Moser model. Then we notice that the scalar parts (in the auxiliary space) of the M-matrices corresponding to the second and third flows have form of special spin exchange operators. The freezing trick restricts them to quantum Hamiltonians of long-range spin chains. We show that for a special choice of the R-matrix these Hamiltonians reproduce those for the Inozemtsev chain. In the general case related to the Baxter's elliptic R-matrix we obtain a natural anisotropic extension of the Inozemtsev chain. Commutativity of the Hamiltonians is verified numerically. Trigonometric limits lead to the Haldane-Shastry chains and their anisotropic generalizations.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
I. Sechin, A. Zotov,