Article ID Journal Published Year Pages File Type
818841 Composites Part B: Engineering 2012 5 Pages PDF
Abstract

In this paper, urethane magnetorheological elastomers (MREs) consisting of carbonyl-iron particles in a polyurethane matrix were studied. The volume fraction of particles was equal to 11.5%. Three types of ferromagnetic particles were used, with average particle size ranging from 1 to 70 μm. The elastic (storage) modulus G′ was measured as a function of angular frequency ω and strength of magnetic field. The measured G′ values were approximated with empirical model. The highest magnetorheological effect has been found for samples with 6–9 μm carbonyl-iron powder. The highest increase in the yield stress is observed for samples with particles aligned at 30° to the magnetic field lines. It has been found that rheological properties strongly depend on the MRE microstructure, in particular on the size/shape of particles and their arrangement. By optimizing the particles size, shape and alignment, the stiffness of MREs has been increased under applied magnetic field.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,