Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8188448 | Physics Letters B | 2013 | 5 Pages |
Abstract
We investigate quark deconfinement by calculating the effective potential of the Polyakov loop using the non-perturbative propagators in the Landau gauge measured in the finite-temperature lattice simulation. With the leading term in the 2-particle-irreducible formalism the resultant effective potential exhibits a first-order phase transitions for the pure SU(3) Yang-Mills theory at the critical temperature consistent with the empirical value. We also estimate the thermodynamic quantities to confirm qualitative agreement with the lattice data near the critical temperature. We then apply our effective potential to the chiral model-study and calculate the order parameters and the thermodynamic quantities. Unlike the case in the pure Yang-Mills theory the thermodynamic quantities are sensitive to the temperature dependence of the non-perturbative propagators, while the behavior of the order parameters is less sensitive, which implies the importance of the precise determination of the temperature-dependent propagators.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
Kenji Fukushima, Kouji Kashiwa,