Article ID Journal Published Year Pages File Type
819011 Composites Part B: Engineering 2011 7 Pages PDF
Abstract

Using home-built experimental setups, electrical properties and electromechanical characterization of two systems based on multiwalled carbon nanotubes (MWNTs) were investigated at room temperature. The first system is formed by carbon nanotubes (CNTs) either isolated or in small groups on a gold substrate, while the second one concerns a macroscale three-dimensional entanglement of CNTs in powder form. The local electrical resistance on systems of the first type was measured using an atomic force microscopy with a conductive tip and showed a narrow distribution of resistance values as well for isolated CNTs as for small groups of them. However, in this latter case the average resistance value has been found to be one order of magnitude higher than that of individual CNTs, which was attributed to the contact resistance between CNTs. This parameter was then studied from a statistical viewpoint through electromechanical tests performed at a macroscopic scale. They consisted in applying an external compression to CNTs powder samples and measuring the evolution of the electrical resistance across the pressed material. These tests demonstrated an outstanding decrease of the electrical resistance resulting from the increasing number of random connections between CNTs under compression, and the experimental curves were fitted with an analytical model. Furthermore, it was deduced from this model that the elementary contact resistance between CNTs decreases under compression. The stability of this electrical contact was verified over several durations and under different constant applied loads.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , , ,