Article ID Journal Published Year Pages File Type
819013 Composites Part B: Engineering 2011 6 Pages PDF
Abstract

Hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotubes (HPU-MWCNTs) were incorporated in a polyurethane (PU) matrix based on poly(ethylene oxide-tetrahydrofuran) and aliphatic polyisocyanate resin as curing agent. The 9–12 nm thick HPU shell formed on the MWCNTs improved the dispersion of MWCNTs and enhanced the interfacial adhesion between the PU matrix and MWCNTs, leading to improvements in storage modulus and Tg of the composites and enhancement of the thermal stability of PU. Thus, composites with 0.5–1 wt% MWCNTs increased the thermal conductivity by about 60–70% when compared to, and retained the high electrical resistivity of, neat PU.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , , , ,