Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8192637 | Physics Letters B | 2011 | 5 Pages |
Abstract
Using a back-angle detector array covering 117° to 167°, coincidence measurements of breakup fragments at sub-barrier energies have enabled the complete characterisation of the breakup processes in the reactions of 6,7Li with 208Pb. Those breakup processes fast enough (â¼10â22 s) to affect fusion are identified through the measured relative energy of the two breakup fragments. The majority of these prompt breakup events are triggered by transfer of a neutron from 6Li, and of a proton to 7Li. These mechanisms, rather than breakup following direct projectile excitation, should thus be responsible for the majority of the â¼30% suppression of complete fusion observed at above-barrier energies. Breakup characteristics thus depend both on the properties of the initial nucleus and its neighbours. Quantitative modelling of this two-step process will require development of a complete reactions model, relevant for reactions involving both α-cluster nuclei, and exotic nuclei near the neutron and proton drip-lines.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
D.H. Luong, M. Dasgupta, D.J. Hinde, R. du Rietz, R. Rafiei, C.J. Lin, M. Evers, A. Diaz-Torres,