Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
819503 | Composites Part B: Engineering | 2008 | 5 Pages |
The use of titanium and steel bone plates to fix fractured limbs can create problems due to stress shielding, bone resorption and subsequent refracture. Here, braided carbon fibre reinforced poly-ether-ether-ketone (CF/PEEK) was evaluated as a possible implant material that could reduce these problems. CF/PEEK bone plates were aged in a simulated body environment for up to 12 weeks and then mechanically tested in 3 and 4-point bending tests. Sample mass increased by around 0.3 wt.%, yet bending stiffness and strength remained unchanged. Scanning Electron Microscopy (SEM) showed no changes in failure modes with age. Braided CF/PEEK shows an excellent resistance to fatigue failure even after prolonged ageing, easily surpassing the fatigue life of commonly used stainless steel alloys such as 316L. In addition, CF/PEEK had half the stiffness of steel for the same static strength, which would reduce stress shielding. Together, the results suggest that CF/PEEK is a highly suitable material for bone plates and should be further investigated for this application.